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Hybrid Job-driven Scheduling for Virtual 
MapReduce Clusters 

Ming-Chang Lee, Jia-Chun Lin, and Ramin Yahyapour 

Abstract—It is cost-efficient for a tenant with limited budget to establish a virtual MapReduce cluster by renting multiple virtual 
private servers (VPSs) from a VPS provider. To provide an appropriate scheduling scheme for this type of computing 
environment, we propose in this paper a hybrid job-driven scheduling scheme (JoSS for short) from a tenant’s perspective. 
JoSS provides not only job-level scheduling, but also map-task level scheduling and reduce-task level scheduling. JoSS 
classifies MapReduce jobs based on job scale and job type and designs an appropriate scheduling policy to schedule each 
class of jobs. The goal is to improve data locality for both map tasks and reduce tasks, avoid job starvation, and improve job 
execution performance. Two variations of JoSS are further introduced to separately achieve a better map-data locality and a 
faster task assignment. We conduct extensive experiments to evaluate and compare the two variations with current scheduling 
algorithms supported by Hadoop. The results show that the two variations outperform the other tested algorithms in terms of 
map-data locality, reduce-data locality, and network overhead without incurring significant overhead. In addition, the two 
variations are separately suitable for different MapReduce-workload scenarios and provide the best job performance among all 
tested algorithms. 

Index Terms—MapReduce, Hadoop, virtual MapReduce cluster, map-task scheduling, reduce-task scheduling 

——————————   !   —————————— 

1 INTRODUCTION
apReduce [1] is a distributed programming model 
proposed by Google to process vast amount of data 

in a parallel manner. Due to programming-model sim-
plicity, built-in data distribution, scalability, and fault 
tolerance, MapReduce and its open-source implementa-
tion called Hadoop [2] have been widely employed by 
many companies, including Facebook, Amazon, IBM, 
Twitter, and Yahoo!, to process their business data. 
MapReduce has also been used to solve diverse applica-
tions, such as machine learning [3], data mining [4], bioin-
formatics [5], social network [6], and astronomy [7]. Other 
MapReduce-like implementations can be found in [8-10]. 

MapReduce enables a programmer to define a 
MapReduce job as a map function and a reduce function, 
and provides a runtime system to divide the job into mul-
tiple map tasks and reduce tasks and perform these tasks 
on a MapReduce cluster in parallel. Typically, a MapRe-
duce cluster consists of a set of commodity ma-
chines/nodes located on several racks and interconnected 
with each other in a local area network (LAN). In this 
paper, we call this a conventional MapReduce cluster. 
Due to the fact that building and maintaining a conven-
tional MapReduce cluster is costly for a per-
son/organization with limited budget, an alternative way 
is to establish a virtual MapReduce cluster by either rent-
ing a MapReduce framework from a MapReduce service 

provider (e.g., Amazon [11]) or renting multiple Virtual 
Private Servers (VPSs) from a VPS provider (e.g., Linode 
[12] or Future Hosting [13]). Each VPS is a virtual ma-
chine with its own operating system and disk space. Due 
to some reasons, such as availability issue of a datacenter 
or resource shortage on a popular datacenter, a tenant 
might rent VPSs from different datacenters operated by a 
same VPS provider to establish his/her virtual MapRe-
duce cluster. In this paper, we concentrate on a virtual 
MapReduce cluster of this type. 

For a person/organization that establishes a conven-
tional MapReduce cluster, map-data locality (which is 
defined as how close a map task and its input data are [14]) 
in the cluster is classified into node locality, rack locality, 
and off-rack [15] since the person/organization is aware of 
the physical interconnection and placement among all 
nodes and all racks. However, for a tenant who establishes 
a virtual MapReduce cluster, the tenant only knows each 
VPS’s IP address and each VPS’s datacenter location (e.g., 
city name). Other information such as physical machine 
and rack that each VPS belongs to is unreleased by the 
provider. Hence, from the tenant’s viewpoint, the map-
data locality in his/her virtual MapReduce cluster can 
only be classified into the following three levels:   
1. VPS-locality, which means that a map task and its 

input data are co-located at the same VPS.  
2. Cen-locality, which means that a map task and its in-

put are within the same datacenter, but not at the same 
VPS. 

3. off-Cen, which means that a map task and its input are 
located at different datacenters.  
Furthermore, reduce-data locality is rarely addressed 

in a conventional MapReduce cluster since reducing the 
distance between a reduce task and its input data coming 
from all the related map tasks in a LAN is difficult. But 
this is achievable in a virtual MapReduce cluster compris-
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ing multiple datacenters. 
Many task scheduling algorithms have been proposed 

[14-18] to improve data locality and to shorten job turna-
round time, but most of them only focus on scheduling 
map tasks, rather than scheduling reduce tasks. Hence, 
employing them in a virtual MapReduce cluster might 
cause a low reduce-data locality. Besides, most of current 
scheduling algorithms are designed to achieve the node 
locality and rack locality for conventional MapReduce 
clusters, rather than achieving the VPS-locality and Cen-
locality for virtual MapReduce clusters. Consequently, 
adopting them in a virtual MapReduce cluster might be 
unable to provide a high map-data locality. 

In order to provide an appropriate scheduling scheme 
for a tenant of VPSs to achieve a high map-and-reduce 
data locality and improve job performance in his/her 
virtual MapReduce cluster, in this paper we propose a 
hybrid job-driven scheduling scheme (JoSS for short) by 
providing scheduling in three levels: job, map task, and 
reduce task. JoSS classifies MapReduce jobs into either 
large or small jobs based on each job’s input size to the 
average datacenter scale of the virtual MapReduce clus-
ter, and further classifies small MapReduce jobs into ei-
ther map-heavy or reduce-heavy based on the ratio be-
tween each job’s reduce-input size and the job’s map-
input size. Then JoSS uses a particular scheduling policy 
to schedule each class of jobs such that the corresponding 
network traffic generated during job execution (especially 
for inter-datacenter traffic) can be reduced, and the corre-
sponding job performance can be improved. In addition, 
we propose two variations of JoSS, named JoSS-T and 
JoSS-J, to guarantee a fast task assignment and to further 
increase the VPS-locality, respectively. 

We implement JoSS-T and JoSS-J in Hadoop-0.20.2 and 
conduct extensive experiments to compare them with 
several known scheduling algorithms supported by Ha-
doop, including the FIFO algorithm [1], Fair scheduling 
algorithm [19], and Capacity scheduling algorithm [20]. 
The experimental results demonstrate that both JoSS-T 
and JoSS-J outperform the other tested algorithms in 
terms of map-data locality, reduce-data locality, and net-
work overhead without causing too much overhead, re-
gardless of job type and scale.  

The contributions of this paper are as follows. 
1. We introduce JoSS to appropriately schedule MapRe-

duce jobs in a virtual MapReduce cluster by address-
ing both map-data locality and reduce-data locality 
from the perspective of a tenant. 

2. By classifying jobs into map-heavy and reduce-heavy 
jobs and designing the corresponding policies to 
schedule each class of job, JoSS increases data locality 
and improves job performance. Furthermore, by clas-
sifying jobs into large and small jobs and scheduling 
them in a round-robin fashion, JoSS avoids job starva-
tion and improves job performance.  

3. A formal proof is also provided to determine the best 
threshold for classifying MapReduce jobs. 

4. Two variations of JoSS (i.e., JoSS-T and JoSS-J) are 
proposed to respectively achieve two conflicting goals: 
speeding up task assignment and further increasing 
the VPS-locality.  

5. We refer a set of MapReduce benchmarks to create 
two different MapReduce workloads for evaluating 
and comparing JoSS-T and JoSS-J with three known 
scheduling algorithms supported by Hadoop. Moreo-
ver, a set of metrics showing data-locality, network 
overhead, job performance, and load balance are used 
to achieve a comprehensive comparison. The results 
confirm that JoSS-T and JoSS-J perform well for most 
of the metrics. 

The rest of this paper is organized as follows. Sections 
2 and 3 survey MapReduce and related work, respective-
ly. Section 4 presents the details of JoSS and the two vari-
ations. Section 5 derives the best threshold to classify 
map-heavy jobs and reduce-heavy jobs. In Section 6, ex-
tensive experiments are conducted and experimental 
results are discussed. Section 7 concludes this paper and 
outlines our future work. 

2 MAPREDUCE 
A MapReduce job comprises a map function and a reduce 
function. The map function is applied on application-
specific input data structured as a series of key-value 
pairs to generate intermediate key-value pairs. The re-
duce function merges all intermediate key-value pairs 
related to the same key to generate final result. In Ha-
doop, a MapReduce cluster consists of two masters called 
JobTracker [2] and NameNode [2] and a set of slaves. 
JobTracker coordinates and schedules the execution of 
MapReduce jobs, whereas NameNode manages the dis-
tributed filesystem namespace of the cluster. Each slave 
provides its computation resource to execute tasks and its 
storage capacity to hold data. Each slave has a limited 
number of map slots and reduce slots to execute map 
tasks and reduce tasks, respectively. 

Before submitting a MapReduce job 𝐽 to process a data 
file 𝐷, a user needs to upload 𝐷 to the distributed filesys-
tem of a MapReduce cluster. The file 𝐷 will be divided 
into fixed-size blocks (e.g., 64 MB in Hadoop [16]), and 
each block will be replicated and randomly stored in 
several slaves based on available storage space. The exe-
cution of 𝐽  comprises three phases: map, shuffle, and 
reduce. During the map phase, each map task of 𝐽 is as-
signed to a slave (we call it mapper) to process a block of 
𝐷. If the mapper can retrieve the block from its local disk, 
it immediately executes the map task. Otherwise, it needs 
to retrieve the block from another slave, implying that the 
network traffic might increase and the execution of 𝐽 may 
prolong. When a mapper completes its map task, the 
shuffle phase starts in which the intermediate data gener-
ated by the mapper is partitioned and transmitted to each 
slave that is assigned to run the reduce task of 𝐽 (we call it 
reducer). After the shuffle phase ends, the reduce phase 
starts in which each reducer executes the user-defined 
reduce function to generate the final result. 

3 RELATED WORK 
The FIFO algorithm [1] is a default scheduling algorithm 
provided by Hadoop MRv1. It follows a strict job submis-
sion order to schedule each map task of a job and mean-
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while attempts to schedule a map task to an idle node 
that is close to the corresponding map-input block. How-
ever, the FIFO algorithm only focuses on map-task 
scheduling, rather than reduce-task scheduling. Hence, 
when FIFO is adopted in a virtual MapReduce cluster, its 
low reduce-data locality might cause a long job turna-
round time. Besides, FIFO is designed to achieve node 
locality and rack locality in conventional MapReduce 
clusters, rather than the VPS-locality and Cen-locality in a 
virtual MapReduce cluster. Consequently, the map-data 
locality of FIFO might be low in a virtual MapReduce 
cluster. 

In addition to the FIFO algorithm, Hadoop also pro-
vides the fair scheduling algorithm [19] and the capacity 
scheduling algorithm [20]. The former is proposed by 
Facebook to fairly assign computation resources to jobs 
such that all jobs obtain an equal share of resources over 
time. The latter, introduced by Yahoo!, also allows multi-
ple users to share a MapReduce cluster. It supports mul-
tiple queues and allocates a fraction of a cluster’s compu-
tation resources to each queue, i.e., all jobs submitted to a 
queue can only access to the resource allocated to the 
queue. Similar to these two algorithms, JoSS allows mul-
tiple jobs to simultaneously share the computation re-
source of a virtual MapReduce cluster. But different from 
the two algorithms, JoSS further conducts reduce-task 
scheduling to improve job performance. 

There have been many studies [14][15][17][18][21][35] 
on MapReduce task scheduling. Zaharia et al. [17] pre-
sented the delay scheduling algorithm to improve data 
locality by following the FIFO algorithm but relaxing the 
strict FIFO job order. If the scheduling heuristic cannot 
schedule a local map task, it postpones the execution of 
the corresponding job and searches for another local map 
task from pending jobs. A similar but improved approach 
is further introduced in [15]. However, similar to FIFO, 
these algorithms/approaches did not provide reduce-task 
scheduling. Jin et al. [18] proposed the BAlance-Reduce 
(BAR) algorithm, which produces an initial task allocation 
for all map tasks of a job and then take network state and 
cluster workload into consideration to interactively ad-
justs the task allocation to reduce job turnaround time. In 
order to simplify BAR, the authors assumed that all local 
map tasks spend identical execution time. But this as-
sumption is not realistic since the map-task execution 
time fluctuates even though when the processed input 
size is the same. Besides, reduce-task scheduling was not 
addressed by BAR. 

Tian et al. [35] proposed a MapReduce workload pre-
dict mechanism to classify MapReduce workloads into 
three categories based on their CPU and I/O utilization 
and then propose a Triple-Queue Scheduler to improve 
the usage of both CPU and disk I/O resources under 
heterogeneous workloads. Guo [14] presented an optimal 
map-task scheduling algorithm, which converts a task 
assignment problem into a Linear Sum Assignment Prob-
lem so as to find the optimal assignment. Nevertheless, 
applying this algorithm to real-world MapReduce clus-
ters need to carefully determine an appropriate time point 
to conduct the algorithm since slaves might become idle 

at different time points. Ehsan and Sion [21] introduced a 
co-scheduler called LiPS, which utilizes linear program-
ming to simultaneously co-schedule map-input data and 
map tasks to nodes such that dollar cost can be mini-
mized. But their assumption, i.e., MapReduce jobs and 
their input data are submitted together, might increase 
job turnaround time since replicating the data to the dis-
tributed filesystem of the cluster needs to take a while. J. 
Polo et al. [36] introduced a task scheduler to dynamically 
predict the performance of concurrent MapReduce jobs 
and adjust the resource allocation for the jobs. The goal is 
to allow MapReduce jobs to meet their performance ob-
jectives without over-provisioning of physical resources.  

Some other studies aim to enhance the performance of 
MapReduce in a cloud environment. Palanisamy et al. 
[22] presented a MapReduce resource allocation system 
called Purlieus, which enables a cloud provider to place 
MapReduce input data to appropriate physical machines 
and then place VMs to the physical machines so as to 
provide both map locality and reduce locality. Different 
from Purlieus, JoSS presented in this paper is designed 
from the perspective of a tenant who rents VPSs from a 
VPS provider to build a virtual MapReduce cluster, rather 
than from the perspective of a cloud provider. Park et al. 
[23] introduced a locality-aware dynamic VM reconfigu-
ration technique for virtual clusters running the Hadoop 
platform by dynamically changing the computing re-
source of a VM to maximize the data locality of map 
tasks. Bu et al. [24] proposed a task scheduling strategy 
called ILA to mitigate interference between virtual ma-
chines and meanwhile preserve MapReduce task data 
locality. Similar to [22], the schemes proposed in [23] and 
[24] were designed from the viewpoint of a cloud provid-
er since the data locality in all layers including node local-
ity, rack locality, and off-rack are clear to the provider. 
However, in a virtual MapReduce cluster considered in 
this study, a tenant does not know all of the abovemen-
tioned data-locality levels. 

4 THE PROPOSED SCHEME 
In this section, we describe how JoSS schedules 

MapReduce jobs in a virtual MapReduce cluster con-
sisting of 𝑘 datacenters, 𝑘 > 1. Let 𝑐𝑒𝑛! be the 𝑐-th data-
center supporting the composition of the virtual MapRe-
duce cluster, 𝑐 = 1, 2,… , 𝑘 . Let 𝑁!"#,!  be the number of 
VPSs provided by 𝑐𝑒𝑛!, 𝑁!"#,! > 1. Let 𝑉𝑃𝑆!,ℓ𝓁 be the ℓ𝓁-th 
VPS provided by 𝑐𝑒𝑛! , ℓ𝓁＝1, 2,… ,𝑁!"#,! . Assume that 
each VPS has only one map slot and one reduce slot, i.e., 
at most one map task and one reduce task can be per-
formed by a VPS simultaneously. For each datacenter 
𝑐𝑒𝑛!, JoSS maintains two permanent queues, denoted by 
𝑀𝑄!,! and 𝑅𝑄!,!, to respectively put the map tasks and the 
reduce tasks that are scheduled to be executed by VPSs at 
𝑐𝑒𝑛!. 
Let 𝐽 be a MapReduce job submitted by a user, and 𝐷 is 

the input data processed by 𝐽. Based on the predefined 
block size 𝑆, 𝐷 will be divided into 𝑚 blocks 𝐵!,𝐵!,… ,𝐵! 
where  𝑚 = !

!
. Let 𝐵! is the 𝑖-th block of 𝐷, 𝑖 = 1, 2,… ,𝑚. 

According to the total number of the blocks, 𝐽 is divided 
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into the same number of map tasks. Let 𝑀! be the 𝑖-th 
map task that processes 𝐵! , 𝑖 = 1, 2,… ,𝑚 . Let 𝑟  be the 
number of reduce tasks of 𝐽, and let 𝑅! be the 𝑗-th reduce 
task of 𝐽 where 𝑗 = 1, 2,… , 𝑟 and 𝑟 ≥ 1. 

In the following, a VPS performing a map task is called 
a mapper, whereas a VPS running a reduce task is called 
a reducer. 

4.1 Job Classification 
Before introducing the algorithm of JoSS, we first describe 
how JoSS classifies jobs and schedules each class of jobs. 

Let 𝑆!"#$%" and 𝑆!"# be the total reduce-input size and 
the total map-input size of 𝐽, respectively. Based on the 
ratio of 𝑆!"#$%" over 𝑆!"#, 𝐽 can be classified into either a 
reduce-heavy job or a map-heavy job. If 𝐽 satisfies Eq. (1), 
implying that the network overhead is dominated by 𝐽’s 
reduce-input data, then 𝐽 is classified as a reduce-heavy 
job (RH job for short). Otherwise, 𝐽 is classified as a map-
heavy job (MH job for short). Note that 𝑡𝑑 is a threshold 
to determine the classification, 𝑡𝑑 ≥ 0. The best value of 
𝑡𝑑 will be derived in Section 5. 

!!"#!"#
!!"#

> 𝑡𝑑  (1) 

In fact, 𝑆!"# = 𝐵!!
!!!  where 𝐵!  is the size of 𝐵! , and 

𝑆!"#$%" = 𝐵! ∙ 𝐹𝑃!!
!!!  where 𝐹𝑃!  is the filtering per-

centage of 𝐵! showing the ratio of 𝑀!’s map-output size 
over 𝑀!’s map-input size, 𝐹𝑃! ≥ 0 [25][26]. 

In order to reduce Eq. (1) and the above classification, 
we chose six MapReduce benchmarks: Word-Count, 
Grep, Inverted-Index, Sequence-Count, Self-Join, and 
Term-Vector from PUMA [33] to conduct two experi-
ments. The purpose is to study the difference among the 
filtering-percentage values of all map tasks of a MapRe-
duce job. In the first experiment, we randomly selected 17 
web documents from the Wikipedia dataset [30] to be the 
input of each benchmark. However, in the second exper-
iment, we randomly chose ten different TXT files from 
[34] to be the input of each benchmark. The motivation 
behind these two experiments is to see whether different 
types of input data influence the filtering-percentage 
values of map tasks of a MapReduce job or not. Hence, 
we did not modify the six MapReduce benchmarks to suit 
different types of input data in our experiments.   

In the first experiment, the sizes of these 17 web doc-
uments are 3.5, 5.8, 11, 35, 52, 63.5, 88.5, 172, 242, 311, 413, 
546, 595, 827, 1074, 1286, and 1442 MB. Tables 1 and 2 list 
the occurrence frequencies of top 10 words and the analy-
sis of word length in one of these documents, respective-
ly. Note that the analyses of all of the 17 documents are 
similar to Table 1 and 2, thus we do not show them here 
to save space. In the first experiment, each web document 
was partitioned based on the block size of 128 MB. Hence, 
each benchmark processed 56 blocks in total, i.e., 56 map 
tasks were correspondingly generated and executed for 
each benchmark. It also implies that we could obtain 56 
filtering-percentage values after each benchmark com-
pletes. 

Note that we performed the Grep benchmark three 
times to individually search for two common patterns 
(e.g., a and the) and one uncommon pattern (e.g., mapre-
duce) in these 17 files. The purpose is to see how different 

input patterns/keywords impact the filtering-percentage 
value of the Grep benchmark. 

TABLE 1 
THE OCCURRENCE FREQUENCIES OF TOP 10 WORDS IN ONE 

WEB DOCUMENT. 
Word Occurrence Percent Rank 
/> 7796 3.99% 1 
<contributor> 6294 3.22% 2 
</contributor> 6294 3.22% 2 
</page> 6294 3.22% 2 
</revision>   6294 3.22% 2 
<format>text/x-wiki</format> 6294 3.22% 2 
<text 6294 3.22% 2 
<revision> 6294 3.22% 2 
<model>wikitext</model> 6294 3.22% 2 
<page> 6294 3.22% 2 

TABLE 2 
THE ANALYSIS OF WORD LENGTH IN ONE WEB DOCUMENT. 

Average Word length 22.04 
Std. 12.73 
Max word length 114 
Min word length 1 
Mode 2 

 

 
Fig. 1. The average filtering-percentage values of various MapRe-
duce benchmarks on the 17 web documents. 

Fig. 1 shows the average filtering-percentage values of 
all tested benchmarks on these 17 files. We can see that 
each benchmark has its own average filtering-percentage 
value, and all benchmarks (except for Grep) had a stand-
ard deviation of less than 0.037. Therefore, for most tested 
benchmarks, it is acceptable to use their average filtering-
percentage values to represent the filtering-percentage 
values of all their map tasks.  

Although Grep has a higher standard deviation be-
cause of the inputted patterns, its filtering-percentage 
value is at most one since its intermediate data is at most 
as large as its input data. Hence, any Grep or Grep-like 
job will always be classified as a MH job based on Eq. (3) 
and the best value of 𝑡𝑑 that will be both described later. 

In addition to the above experiment, we also executed 
all the benchmarks on the same 17 files by setting block 
size into 64 MB. The corresponding filtering-percentage 
results are very close to Fig. 1, so they are not presented 
in this paper in order to save paper space. Based on our 
experiment results, we conclude that block size is not a 
key factor in determining the filtering-percentage value of 
a map task.  

In the second experiment, the sizes of the ten TXT files 
are 163, 262, 292, 394, 462, 675, 702, 916, 1005, and 1057 
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KB. Tables 3 and 4 list the occurrence frequencies of top 
10 words and the word-length analysis in one of these 
files, respectively. Note that the analyses of the rest files 
are similar to Tables 3 and 4, so again we do not show 
them here to save space. The block size remains the same 
(i.e., 128 MB). Similar to the first experiment, we also 
executed the Grep benchmark for three times to individu-
ally search for patterns ‘a’, ‘the’, and ‘book’. Fig. 2 illus-
trates the average filtering-percentage values of all tested 
benchmarks on the ten files. It is clear that the average 
filtering-percentage value of each benchmark in Fig. 2 is 
different from that in Fig. 1, implying that the type of 
input-data processed by a MapReduce job has a signifi-
cant impact on the corresponding filtering-percentage 
value. The key reason is that the numbers of whitespace 
characters in a web document is different from that of a 
non-web document. A web document usually contains a 
lot of whitespace characters to form all markups, but a 
non-web document usually does not have so many 
whitespace characters. 

TABLE 3 
THE TOP 10 WORD FREQUENCIES IN ONE TXT FILE. 

Word Occurrence Percent Rank 
the 9937 9% 1 
to 3709 3% 2 
and 3689 3% 3 
of 3504 3% 4 
a 3434 3% 5 
in 2619 2% 6 
I 2214 2% 7 
you 2048 2% 8 
it 1370 2% 9 
on 1050 1% 10 

TABLE 4 
THE WORD-LENGTH ANALYSIS OF ONE TXT FILE. 

Average Word length 7.767 
Std. 2.7 
Max word length 29 
Min word length 1 
Mode 3  

 

 
Fig. 2. The average filtering-percentage values of various MapRe-
duce benchmarks on the ten TXT files. 

Nevertheless, Fig. 2 shows that all benchmarks (except 
for Grep) had a standard deviation less than 0.15. Based 
on the results shown in Figs. 1 and 2, we can conclude 
that as long as a MapReduce job processes a same type of 
input data, the filtering-percentage values of all the map 

tasks will be similar and the standard deviation will be 
negligible as compared with the corresponding average 
filtering-percentage value. Hence, using the average fil-
tering-percentage value to represent the filtering-
percentage values of all the map tasks is acceptable. This 
phenomenon holds for most tested MapReduce bench-
marks. Hence, in this paper, we use the average filtering-
percentage value of a job on a particular input-data type 
to replace the filtering-percentage value of each map task 
of the job. In other words, we use 𝐹𝑃!  to substitute 
𝐹𝑃!   where 𝐹𝑃! is the average filtering-percentage value of 
𝐽 and 𝑖 = 1, 2,… ,𝑚. By doing so, Eq. (1) can be reduced as 

!!"#$%"
!!"#

= !! ∙!!!!
!!!

!!!
!!!

= !!!
!!! ∙!!!

!!!
!!!

= 𝐹𝑃! > 𝑡𝑑  (2) 

and the condition used to classify J can be reduced as  

𝐽 =
a  RH  job,                    if  𝐹𝑃! > 𝑡𝑑          
a  MH  job, else                                     

(3) 

In addition, JoSS also adopts another classification to 
classify 𝐽 based on the input scale of 𝐽 to 𝑁!"#_!"#, which is 
the average datacenter scale of a virtual MapReduce clus-

ter, i.e., 𝑁!"!_!"# =
!!"#,!!

!!!

!
. If 𝑚 ≤ 𝑁!"#_!"#  (implying 

that all map tasks of 𝐽 are possible to be performed by a 
single datacenter of the virtual MapReduce cluster simul-
taneously), 𝐽 is classified as a small job to the cluster. Oth-
erwise, 𝐽 is classified as a large job to the cluster. In short, 
the classification rule is below. 

𝐽 =
a  small  job,                  if  𝑚 ≤ 𝑁!"#_!"#          
a  large  job,                    else                                                        

(4) 

The purpose behind this classification is to prevent the 
VPSs at one datacenter of a small virtual MapReduce 
cluster from executing all map tasks of a large job by 
themselves since this will prolong job execution.  

4.2 Scheduling Policies 
Based on the job classifications mentioned in Section 

4.1, JoSS utilizes the following three scheduling policies: 
1. Policy A:  

This policy is designed for a small RH job. If 𝐽 is a 
small RH job, it would be better that each reducer of 𝐽 
is close to all mappers of 𝐽 since the reducer can more 
quickly retrieve its input data from all the mappers. 
But this also implies that all mappers of 𝐽 should be 
close to each other.  

Hence, policy A works as follows. It first chooses 
𝑐𝑒𝑛!, which is a datacenter having the least amount of 
unprocessed tasks among all the 𝑘  datacenters, 
𝑐𝑒𝑛! ∈ 𝑐𝑒𝑛!, 𝑐𝑒𝑛!,… , 𝑐𝑒𝑛! . Then it schedules all tasks 
of 𝐽 to 𝑐𝑒𝑛!  by putting 𝐽’s map tasks and 𝐽’s reduce 
tasks at the end of 𝑀𝑄!,! and 𝑅𝑄!,!, respectively. In 
this way, all these tasks can be executed only by VPSs 
at 𝑐𝑒𝑛!, and each reducer of 𝐽 can retrieve its input da-
ta from its local datacenter (i.e., reduce-data locality 
can be improved). 

2. Policy B: 
This policy is designed for a small MH job. If 𝐽 is a 
small MH job, it would be better that each mapper of 𝐽 
is close to its input block, and each reducer of 𝐽 is close 
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to most mappers of 𝐽. Hence, policy B works as follows: 
It schedules 𝐽’s map tasks based on the number of 
unique input blocks of 𝐽 held by each datacenter. If a 
datacenter holds more unique blocks of 𝐽, more map 
tasks of 𝐽 will be scheduled to the VPSs at this datacen-
ter. The purpose is allowing each mapper of 𝐽 to re-
trieve its input block from its local datacenter. In addi-
tion, to make 𝐽’s reducers close to most 𝐽’s mappers, 
policy B schedules all reduce tasks of 𝐽 to the datacen-
ter that holds the maximum number of 𝐽 ’s unique 
blocks. 

For example, Fig. 3 illustrates the locations of all 
blocks of a job Y over three datacenters (Note that the 
input file of Y is fragmented into six blocks, and each 
block has two replicas.). Since 𝑐𝑒𝑛! holds the largest 
number of Y ’s unique blocks (i.e., four), policy B will 
schedule four map tasks of Y to 𝑐𝑒𝑛! to process 𝐵!, 𝐵!, 
𝐵!, and 𝐵! by appending the four map tasks to the end 
of 𝑀𝑄!,!  (Recall that 𝑀𝑄!,!  is the permanent map-task 
queue of 𝑐𝑒𝑛!, 𝑐 = 1, 2,… , 𝑘). After that, 𝑐𝑒𝑛! still holds 
one unscheduled block of Y (i.e., 𝐵! ), and 𝑐𝑒𝑛!  still 
holds two unscheduled blocks of Y (i.e., 𝐵! and 𝐵!). 
Hence, policy B will schedule the remaining two map 
tasks of Y to 𝑐𝑒𝑛! to process 𝐵! and 𝐵! by inserting the 
two map tasks to the end of 𝑀𝑄!,!. Finally, due to the 
fact that 𝑐𝑒𝑛! holds the maximum number of unique 
blocks of Y, policy B schedules all reduce tasks of Y to 
𝑐𝑒𝑛!  by appending them to the end of 𝑅𝑄!,!  (Recall 
that 𝑅𝑄!,! is the permanent reduce-task queue of 𝑐𝑒𝑛! , 
𝑐 = 1, 2,… , 𝑘).  

 
Fig. 3. An example showing the block locations of job Y in a vir-
tual MapReduce cluster comprising three datacenters. 

3. Policy C: 
This policy is designed for a large job. If 𝐽 is a large job 
to a virtual MapReduce cluster, using one datacenter of 
the cluster to run all map tasks of 𝐽 might need several 
rounds to finish these map tasks, implying that job 
turnaround time will prolong. To prevent this from 
happening, it is better not to use a single datacenter to 
run all these map tasks. 

Hence, as long as 𝐽 is a large job, JoSS utilizes policy 
C, which in fact uses the same strategy of policy B to 
schedule all tasks of 𝐽. However, in policy C, all the 
map tasks scheduled to 𝑐𝑒𝑛! will not be put into 𝑀𝑄!,! 
since 𝑀𝑄!,! is reserved for only small jobs. Instead, the-
se map tasks will be put into a new map-task queue 
created for 𝑐𝑒𝑛!.  

Similarly, the reduce tasks of the large job scheduled 
to 𝑐𝑒𝑛! will be put into a new reduce-task queue creat-
ed for 𝑐𝑒𝑛!, rather than 𝑅𝑄!,!. The purpose is to sepa-
rate large jobs and small jobs into different queues and 

allow JoSS to avoid job starvation (which will be de-
scribed later).  

4.3 JoSS and its two variations 
JoSS consists of three components: input-data classifier, 
task scheduler, and task assigner. The input-data classifi-
er is designed to classify input data uploaded by a user 
into one of the two types: web document and non-web 
document. A web document refers to a file consisting of a 
lot of tags enclosed in angle brackets. By simply inspect-
ing the first several sentences of a document, the input-
data classifer can easily know if it is a web document or 
not. After the classification, the input-data classifier rec-
ords the type of the input data in JoSS. 

Whenever receiving a MapReduce job from a user, the 
task scheduler determines the type of the job and then 
schedules the job based on either policy A, B, or C. The 
task assigner then determines how to assign a task to a 
VPS whenever the VPS has an idle slot.  

The task scheduler of JoSS 
Input: 𝐽 and input-data description 
Output: task-scheduling decision 
Procedure: 
1: Calculate a hash value for 𝐽’s executable code and 𝐽’s input-data 
2: type; 
3: Let 𝐻 be a set of hash values previously generated by JoSS; 
4: if the hash value is not in 𝐻 { 
5:     Append all map tasks of 𝐽 to the end of 𝑀𝑄!"!#; 
6:     Append all reduce tasks of 𝐽 to the end of 𝑅𝑄!"!#;} 
7: else {  
8: if 𝐽 is a small RH job {  //Use policy A. 
9:         Let 𝑐𝑒𝑛!  be a datacenter having the least unprocessed  
10: tasks among 𝑐𝑒𝑛!, 𝑐𝑒𝑛!, …, 𝑐𝑒𝑛!; 
11:         Append all map tasks of 𝐽 to the end of 𝑀𝑄!,!; 
12: Append all reduce tasks of 𝐽 to the end of 𝑅𝑄!,!; } 
13: else{  
14: Let 𝐿!  be a set of all unique input blocks of 𝐽 held by 𝑐𝑒𝑛!  
15: where 𝑐 = 1, 2,… , 𝑘; 
16: Let 𝛼 = 𝑚;    /* 𝑚 is the number of map tasks of 𝐽. */ 
17:         while 𝛼 > 0{ /* i.e., not all map tasks of  𝐽 are scheduled.*/ 
18: Let 𝐿!  is the first largest set among 𝐿!, 𝐿!, …, 𝐿!; 
19: Let 𝐿!  be the size of 𝐿!; 
20: Let 𝑐𝑒𝑛!  be the related datacenter; 
21:             if 𝐽 is a small MH job { //Use policy B 
22:                 Append 𝐿!  map tasks of 𝐽 to the end of 𝑀𝑄!,!;} 
23:             else { /* i.e.,  𝐽 is a large job, so use policy C. */ 
24:                Let 𝑝 be the total number of map-task queues in 𝑐𝑒𝑛!; 
25:                Generate a new map-task queue 𝑀𝑄!,!!!;  
26:                Append 𝐿!  map tasks of 𝐽 to the end of 𝑀𝑄!,!!!;} 
27:             for 𝑐 = 1 to 𝑘{ 
28: Delete a block from 𝐿!  if the block is in 𝐿!; } 
29:     𝛼 = 𝛼 −   𝐿! ;} 
30: Let 𝑐𝑒𝑛!  be a datacenter holding the largest number of  
31: unique input blocks of 𝐽; 
32:         if 𝐽 is a small MH job { //Use policy B 
33:     Append all reduce tasks of 𝐽 to the end of 𝑅𝑄!,!; } 
34:         else {  /* i.e.,  𝐽 is a large job, so use policy C. */ 
35:     Let 𝑞 be the total number of reduce-task queues in 𝑐𝑒𝑛!; 
36:     Generate a new reduce-task queue 𝑅𝑄!,!!!; 
37:     Append all reduce tasks of 𝐽 to the end of 𝑅𝑄!,!!!; }}} 

Fig. 4. The algorithm of the task scheduler. 

Fig. 4 illustrates the algorithm of the task scheduler. 
Upon receiving 𝐽, the task scheduler retrieves 𝐽’s input-
data type classified by the input-data classifier and checks 
whether JoSS has executed 𝐽 on such input-data type or 
not by calculating the corresponding hash value and 
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comparing the value with 𝐻, where 𝐻 is a set of hash 
values previously generated and recorded by JoSS.  

If the hash value is not in 𝐻 (see line 4), it means that 
JoSS does not know 𝐽’s average filtering-percentage value 
and 𝐽’s job classification. To obtain the above information, 
the task scheduler simply appends 𝐽’s all map tasks and 
𝐽’s all reduce tasks to two queues, denoted by 𝑀𝑄!"!# and 
𝑅𝑄!"!#, respectively. This allows the task assigner to use 
the Hadoop FIFO algorithm [1] to assign these tasks to 
idle VPSs. Once 𝐽 is completed, JoSS records the corre-
sponding hash value and averge filtering-percentage 
value.  

However, if the hash value is in 𝐻 (see line 7), it means 
that JoSS knows the average filtering-percentage value of 
𝐽. Then the task scheduler schedules 𝐽 as follows: If 𝐽 is a 
small RH job, the abovementioned policy A is used to 
schedule the tasks of 𝐽 (please see lines 9 to 12). Other-
wise, it means that 𝐽 is either a small MH job or a large 
job, and the task scheduler uses lines 14 to 37 to schedule 
𝐽. Recall that policies B and C are used to schedule a small 
MH job and a large job, respectively. If 𝐽 is a small MH 
job, the task scheduler directly inserts 𝐽’s map tasks to the 
permanent map-task queue of the determined datacenter 
(see line 22), and also inserts 𝐽’s reduce tasks to the per-
manent reduce-task queue of the determined datacenter 
(see line 33). In other words, no additional queue will be 
created for any small jobs. The purpose is not to increase 
the queue management overhead of JoSS. 

In another case, if 𝐽 is a large job, the task scheduler 
additionally generates a new map-task queue and a new 
reduce-task queue to respectively put 𝐽’s map tasks and 
𝐽’s reduce tasks (see lines 24 to 26 and lines 35 to 37). This 
will allow the task assigner to properly assign small jobs 
and large jobs to VPSs. 

Recall that two variations of JoSS (i.e., JoSS-T and JoSS-
J) are proposed in this study. The former combines the 
abovementioned task scheduler and a Task-driven Task 
Assigner (TTA) to provide a fast task assignment. The 
latter combines the task scheduler and a Job-driven Task 
Assigner (JTA) to further improve the VPS-locality. 

Fig. 5 illustrates how TTA works. Whenever 𝑉𝑃𝑆!,ℓ𝓁 has 
an idle map slot, TTA preferentially assigns a map task 
from 𝑀𝑄!"!# to 𝑉𝑃𝑆!,ℓ𝓁 based on the Hadoop FIFO algo-
rithm (see lines 7 to 8). The goal is to preferentially exe-
cute all newly submitted jobs one by one and obtain their 
filtering-percentage values to determine their job classifi-
cations. However, if 𝑀𝑄!"!# is empty, TTA assigns one of 
the first map tasks from all the other map-task queues of 
𝑐𝑒𝑛! in a round-robin fashion (see lines 10 to 13) such that 
tasks can be assigned quickly and job starvation can be 
avoided. 

Similarly, whenever 𝑉𝑃𝑆!,ℓ𝓁 has an idle reduce slot, TTA 
preferentially assigns a reduce task from 𝑅𝑄!"!# to 𝑉𝑃𝑆!,ℓ𝓁 
(see lines 16 to 17). Only when 𝑅𝑄!"!# is empty, TTA as-
signs one of the first reduce tasks from other reduce-task 
queues of 𝑐𝑒𝑛! to 𝑉𝑃𝑆!,ℓ𝓁 (see lines 19 to 22). 

Fig. 6 shows the algorithm of JTA, which in fact is very 
similar to that of TTA. The only difference is that JTA 
always uses the Hadoop FIFO algorithm to assign a map 
task from each map-task queue (please compare line 11 in 

Figs. 5 and 6) so as to further improve the VPS-locality. 

 

Task-driven Task Assigner (TTA) 
Input: an idle slot of 𝑉𝑃𝑆!,ℓ𝓁 
Output: a task assigned to 𝑉𝑃𝑆!,ℓ𝓁 
Procedure: 
1: Let 𝐼!"# and 𝐼!"#  be two indexes with the same initial value 0;  
2: while 𝑉𝑃𝑆!,ℓ𝓁 has an idle slot { 
3:     Let 𝑁!"# be the total number of map-task queues in 𝑐𝑒𝑛!;  
4:     Let 𝑁!"#  be the total number of reduce-task queues in 𝑐𝑒𝑛!;  
5:     if the slot is a map slot { 
6:          if 𝑀𝑄!"!#  is not empty{ 
7:              Use FIFO to assign a map task from 𝑀𝑄!"!#  to 𝑉𝑃𝑆!,ℓ𝓁; 
8:              Remove the task from 𝑀𝑄!"!#; } 
9:          else { 
10:              𝐼!"# = 𝐼!"#   mod  (𝑁!"# + 1);  
11:              Assign the first map task from 𝑀𝑄!,!!"#  to 𝑉𝑃𝑆!,ℓ𝓁; 
12:              Remove the task from 𝑀𝑄!,!!"# ;  
13:              𝐼!"#++;}} 
14:     else {  /* i.e., the idle slot is a reduce slot; */ 
15:          if 𝑅𝑄!"!#  is not empty { 
16:              Assign the first reduce task from 𝑅𝑄!"!#  to 𝑉𝑃𝑆!,ℓ𝓁; 
17:              Remove the task from 𝑅𝑄!"!#; } 
18:          else { 
19:              𝐼!"# = 𝐼!"#   mod  (𝑁!"# + 1); 
20:              Assign the first reduce task from 𝑅𝑄!,!!"#  to 𝑉𝑃𝑆!,ℓ𝓁; 
21:              Remove the task from 𝑅𝑄!,!!"# ;  
22:              𝐼!"#++;}}} 

Fig. 5. The algorithm of Task-driven Task Assigner (TTA). 

Job-driven Task Assigner (JTA) 
Input: an idle slot of 𝑉𝑃𝑆!,ℓ𝓁 
Output: a task assigned to 𝑉𝑃𝑆!,ℓ𝓁 
Procedure: 
1: Let 𝐼!"# and 𝐼!"#  be two indexes with the same initial value 0;  
2: while 𝑉𝑃𝑆!,ℓ𝓁 has an idle slot { 
3:     Let 𝑁!"# be the total number of map-task queues in 𝑐𝑒𝑛!;  
4:     Let 𝑁!"#  be the total number of reduce-task queues in 𝑐𝑒𝑛!;  
5:     if the slot is a map slot { 
6:          if 𝑀𝑄!"!#  is not empty{ 
7:              Use FIFO to assign a map task from 𝑀𝑄!"!#  to 𝑉𝑃𝑆!,ℓ𝓁; 
8:              Remove the task from 𝑀𝑄!"!#; } 
9:          else { 
10:              𝐼!"# = 𝐼!"#   mod  (𝑁!"# + 1);  
11:             Use FIFO to assign a map task from 𝑀𝑄!,!!"#  to 𝑉𝑃𝑆!,ℓ𝓁; 
12:              Remove the task from 𝑀𝑄!,!!"# ;  
13:              𝐼!"#++;}} 
14:     else {  /* i.e., the idle slot is a reduce slot; */ 
15:          if 𝑅𝑄!"!#  is not empty { 
16:              Assign the first reduce task from 𝑅𝑄!"!#  to 𝑉𝑃𝑆!,ℓ𝓁; 
17:              Remove the task from 𝑅𝑄!"!#; } 
18:          else { 
19:              𝐼!"# = 𝐼!"#   mod  (𝑁!"# + 1); 
20:              Assign the first reduce task from 𝑅𝑄!,!!"#  to 𝑉𝑃𝑆!,ℓ𝓁; 
21:              Remove the task from 𝑅𝑄!,!!"# ;  
22:              𝐼!"#++;}}} 

Fig. 6. The algorithm of Job-driven Task Assigner (JTA). 

5 SELECTING THE BEST THRESHOLD 
Recall that JoSS uses 𝑡𝑑 as a threshold that characterizes 
jobs as RH or MH (see Eq. (3)). In this section, we show 
how to derive the best value of 𝑡𝑑. To do this, we consider 
the worst-case inter-datacenter traffic for transmitting the 
map-input data and reduce-input data of a job when this 
job, say 𝐽, is separately judged as a RH job and a MH job. 

If 𝐽 is classified as a RH job, policy A will be used to 
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schedule 𝐽. The worst case for 𝐽’s mappers is that all of 
them need to retrieve their input blocks from other data-
centers. However, because of policy A, 𝐽’s reducers can 
completely retrieve their input from their local datacen-
ters. Hence, the worst-case inter-datacenter traffic for this 
classification, denoted by 𝑇𝑅!, is 

𝑇𝑅! = 𝐵!!
!!!    (5) 

However, if 𝐽 is classified as a MH job, policy B will be 
used, which guarantees that all mappers of 𝐽 can always 
retrieve their input blocks from their local datacenters. 
But in the worst case (i.e., all map tasks of 𝐽 are evenly 
scheduled to each datacenter because of the even distri-
bution of 𝐽’s input blocks over all datacenters), 𝐽’s reduc-
ers have to retrieve the !!!

!
 of their input from other data-

centers where 𝑘 is the total number of the datacenters 
comprising the virtual MapReduce cluster. Hence, the 
worst-case inter-datacenter traffic for this classification, 
denoted by 𝑇𝑅!, is 

𝑇𝑅! =
!!!
!
∙ 𝐵!!

!!! ∙ 𝐹𝑃!  (6) 

If 𝑇𝑅! > 𝑇𝑅!, 𝐽 should be determined as a RH job (ra-
ther than a MH job) since the related worst-case inter-
datacenter traffic is less. Otherwise, 𝐽 should be deter-
mined as a MH job, rather than a RH job. In fact, 
𝑇𝑅! > 𝑇𝑅!  can be expressed as !!!

!
∙ 𝐵!!

!!! ∙ 𝐹𝑃! >

𝐵!!
!!! , which also implies that !!!

!
∙ 𝐹𝑃! > 1. Hence, we 

can obtain Eq. (7). 

𝐹𝑃! >
!
!!!

  (7) 
With Eq. (7) and the condition to determine a RH job 

(i.e., 𝐹𝑃! > 𝑡𝑑 shown in Eq. (3)), we can derive the best 
value of 𝑡𝑑, i.e., 

𝑡𝑑 = !
!!!

  (8) 

6 PERFORMANCE EVALUATION AND COMPARISON 
In this section, we evaluate and compare JoSS-T and JoSS-
J with three scheduling algorithms provided by Hadoop, 
including the FIFO algorithm (FIFO for short), the fair 
scheduling algorithm (Fair for short), the capacity algo-
rithm (Capa for short). 

We established a virtual MapReduce cluster by renting 
31 VPSs from Linode [12], which is a privately owned 
VPS provider based in New Jersey. One VPS acts as the 
Hadoop master server and is located at a datacenter in 
Dallas. The remaining 30 VPSs act as slaves. Among 
them, 15 VPSs are located at a datacenter in Dallas and 
the other 15 VPSs are located at a datacenter in Atlanta. 
Each VPS runs Ubuntu 10.04 with 2 CPU cores, 2 GB 
RAM, and 48 GB SSD storage space. Each VPS has a map 
slot and a reduce slot. We use Hadoop MRv1, which is 
widely adopted in production settings [28], as the imple-
mentation of MapReduce, and modify the source code of 
Hadoop-0.20.2 to realize JoSS-T and JoSS-J. 

To study how different MapReduce jobs with different 
filtering-percentage values influence the performances of 
the five tested algorithms, we chose the following five 
MapReduce benchmarks to conduct our experiments. The 

first four jobs are from the MapReduce benchmark suite 
called PUMA [29], and the corresponding input data are 
web documents chosen from [30]. The last one job is cre-
ated by ourselves, and its input data is a set of TXT files 
chosen from [31]. Based on our analyses shown in Section 
4.1, Table 5 lists the average filtering-percentage values of 
these benchmarks.  

1. Word-Count (WC for short), which counts the occur-
rence of each word in data files. 

2. Sequence-Count (SC for short), which generates a 
count of all unique sets of three consecutive words in 
data files. 

3. Inverted-Index (II for short), which takes a list of data 
files as input and generates word-to-file indexing.  

4. Grep, which searches for a pattern in data files. 
5. Permu, which generates the permutation for three 

consecutive DNA sequences in DNA data files. 

TABLE 5 
THE AVERAGE FILTERING PERCENTAGES OF FIVE BENCHMARKS. 

Benchmark Average filtering percentage 
WC 1.039 
SC 0.569 
II 1.166 
Grep 0.10  
Permu 3 

Based on Eq. (8) and our virtual MapReduce cluster, 
𝑡𝑑 =2 (= !

!!!
= !

!
). Consequently, not all tested MapReduce 

benchmarks will be classified as the same job type by JoSS-
T and JoSS-J. Some of them will be classified as MH jobs, 
and the others will be classified as RH jobs. 

We used the above five benchmarks to create a small 
workload and a mixed workload, and used the two work-
loads to evaluate the performances of the five algorithms. 
The details are listed in Tables 6 and 7. The small work-
load consists of 300 jobs. The size of the input data pro-
cessed by each job is approximately 1 GB. The mixed 
workload comprises 100 jobs to process input-data rang-
ing from 1 GB to 12 GB.  

TABLE 6 
THE DETAILS OF THE SMALL WORKLOAD. 

Total number of jobs 300 
# of WC jobs 60 
# of SC jobs 59 
# of II jobs 59 
# of Grep jobs 61 
# of Permu jobs 61 
Average job arrival interval/ 
 Standard deviation 

27.70 sec/ 
36.52 sec 

TABLE 7 
THE DETAILS OF THE MIXED WORKLOAD. 

Total number of jobs 100  

# of 1GB jobs  64 

26 WC jobs 
20 II jobs 
10 SC jobs 
5 Grep jobs 
3 Permu jobs 

# of 5GB jobs 19  19 Permu jobs 
# of 12GB jobs 17 6 WC jobs  

11 II jobs 
Average job arrival interval/ 
Standard deviation 

42.26 sec/ 
50.13 sec 

 

 
The submission orders of all jobs in two workloads 

were randomly determined, and they are fixed for all 
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tested algorithms to achieve a fair comparison. Hence, 
there is only one permutation for each workload, and 
each tested algorithm separately performed the small 
workload and the mixed workload once. In the small 
workload, the inter-arrival intervals of all jobs were gen-
erated by a workload synthesis tool called SWIM [27]. By 
doing so, all jobs of the small workload will be submitted 
to each tested algorithm one by one based on their sub-
mission order and the generated inter-arrival time. Due to 
the fact that employing the inter-arrival intervals generat-
ed by SWIM for the mixed workload will make Hadoop 
too busy and unstable, we generated all the inter-arrival 
time of the mixed workload based on a Poisson distribu-
tion [32]. This is the reason why the average job arrival 
interval of the mixed workload is lager than that of the 
small workload. 

In both workloads, each job has only one reduce task, 
and all data files were partitioned into blocks of 128 MB. 
Based on the block size, each job in the small workload 
has 8 (=1024/128) map tasks. Hence, all jobs in this work-
load must be classified as small jobs by JoSS-T and JoSS-J 
based on Eq. (4). However, not all jobs in the mixed work-
load will be classified as small jobs by JoSS-T and JoSS-J. 
The reason why the two workloads mostly focus on small 
jobs is because that the survey results in [17] showed that 
most jobs in Facebook workload traces are small. Hence, 
we followed the similar idea to design the two workloads 
and determine the distribution of jobs. In fact, the two 
workloads have different design goals. The small work-
load is to evaluate each algorithm when all submitted jobs 
are either small MH jobs or small RH jobs. However, the 
mixed workload is to evaluate each algorithm when all 
submitted jobs are not only small MH jobs and small RH 
jobs, but also large jobs.   
Recall that JoSS-T and JoSS-J are designed for a tenant 

with limited budget to improve job performance in 
his/her virtual MapReduce cluster. In other words, the 
storage space of the cluster might be very limited. To see 
how each tested algorithm performs in such resource-
limited computing environment, in our experiments, each 
data block has only one replica.   

6.1 The small workload 
The following metrics are used to evaluate the perfor-
mance of the five algorithms under the small workload. 
1. Map-data locality, which can be divided into VPS-

locality rate, Cen-locality rate, and off-Cen rate as 
shown in Eqs. (9), (10), and (11), respectively.  

VPS-­‐locality  rate = #!"#
ℳ

    (9) 

Cen-­‐locality  rate = #!"#
ℳ
     (10) 

      off-­‐Cen  rate = 1 − #!"#
ℳ

+ #!"#
ℳ

     (11) 
where #!"#  and #!"#  are respectively the total         
numbers of the map tasks that can achieve the VPS-
locality and the Cen-locality, and ℳ is the total num-
ber of the map tasks in the workload. Note that the 
values of the above three rates range from 0 to 1. A 
value of one is desirable for both the VPS-locality rate 
and the Cen-locality rate, but a value of zero is desira-
ble for the off-Cen rate.  

2. Reduce-data locality rate, which is defined as the per-
centage of input data that a reducer can obtain from its 
local datacenter. The value ranges from 0 to 1. A value 
of one is desirable.  

3. Inter-datacenter network traffic (INT for short), which 
is the total inter-datacenter network traffic generated 
during the execution of the workload. A small value of 
INT is desirable.  

4. Job turnaround time (JTT for short), which starts when 
a job is submitted to the cluster and finishes when the 
job is completed. A short JTT is desirable. 

5. VPS load, which shows the average number of map 
tasks executed by each VPS and the corresponding 
standard deviation. With this metric, we can know the 
load balance among VPSs. A small standard deviation 
is desirable. 
Fig. 7 illustrates the map-data locality results of all al-

gorithms under the small workload. When JoSS-T and 
JoSS-J were used to run small MH jobs (i.e., those WC, SC, 
II, and Grep jobs), the corresponding off-Cen rates are not 
only far lower than those of the other algorithms, but also 
close to zero, implying all the mappers can almost re-
trieve their input blocks from their local datacenters. This 
is because policy B (which favors map-data locality) is 
always used by JoSS-T and JoSS-J to schedule small MH 
jobs. 

However, the above phenomenon did not appear 
when JoSS-T and JoSS-J performed Permu jobs (which are 
RH jobs) since policy A (which favors reduce-data locali-
ty, rather than map-data locality) is always used to 
schedule small RH jobs. 

Even though JoSS-T and JoSS-J had similar off-Cen re-
sult, the latter provided a higher VPS-locality rate since it 
employs the JTA (see Fig. 6) to further increase the VPS-
locality. This property also makes the VPS-locality rate of 
JoSS-J higher than those of the other algorithms when the 
executed jobs are small MH jobs. 

 
Fig. 7. The map-data locality results of the five tested algorithms 
under the small workload.  

Fig. 8 illustrates the reduce-data locality results of all 
algorithms. Since JoSS-T and JoSS-J employ the same 
reduce-task scheduling approach, they have a very simi-
lar reduce-data locality rate in every benchmark. In addi-
tion, it is clear that JoSS-T and JoSS-J provided a higher 
reduce-data locality rate than the other three algorithms, 
especially when RH jobs were executed. The reason is the 
same, i.e., JoSS-T and JoSS-J always use policy A (which 
favors reduce-data locality) to schedule small RH jobs. 
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Fig. 8. The average reduce-data locality rates of the five algorithms 
under the small workload. 

Fig. 9 shows that JoSS-T and JoSS-J consumed similar 
and low inter-datacenter network traffic because they had 
close off-Cen rates and reduce-data locality rates, no mat-
ter which benchmark was performed. Furthermore, we 
can see that both JoSS-T and JoSS-J have a much lower 
INT compared with the other three algorithms since the 
two algorithms have superior performances in terms of 
data locality. 

 
Fig. 9. The INT of the five algorithms on the small workload. 

 
Fig. 10. The average JTT of the five algorithms on the small work-
load. 

Fig. 10 illustrates the average JTT results of all the al-
gorithms under the small workload. No matter which 
benchmark was executed, JoSS-T led to the shortest aver-
age JTT among all algorithms. Table 8 further shows the 
normalized JTT of all algorithms compared with JoSS-T. 
On the contrary, JoSS-J caused the longest JTT among all 
tested algorithms. Recall that the only difference between 
JoSS-T and JoSS-J is that the former uses TTA (see Fig. 5) 
to assign tasks, whereas the latter uses JTA (see Fig. 6) to 
assign tasks. Since JTA uses the Hadoop FIFO algorithm 
(which follows the strict FIFO order and prefers to sched-

ule map-local tasks first) to further improve VPS-locality, 
the execution of some map tasks might be delayed, which 
therefore prolonged the corresponding JTT for JoSS-J. 

The results confirm that using JoSS-T to schedule the 
small workload not only reduces off-Cen rate and im-
proves reduce-data locality, but also shortens the corre-
sponding JTT. 

TABLE 8 
THE NORMALIZED JTT VALUES OF THE FIVE ALGORITHMS. 
Algorithm WC SC II Grep Permu 
JoSS-T 1 1 1 1 1 
JoSS-J 1.25 1.28 1.46 1.55 1.47 
FIFO 1.05 1.09 1.16 1.40 1.21 
Fair 1.17 1.14 1.21 1.45 1.23 
Capa 1.11 1.08 1.15 1.37 1.22 

 
Table 9 lists the average number of map tasks executed 

by each VPS when the five algorithms individually per-
formed the small workload. Regardless of the tested algo-
rithm, the average number of map tasks performed by 
each VPS is 80 (= 2400/30), but it is inevitable that JoSS-
T and JoSS-J have a higher standard deviation than the 
other algorithms because of policies A and B. Among all 
tested algorithms, FIFO achieved the best load balance 
since its standard deviation was the smallest, but this 
advantage did not improve FIFO’s performance in terms 
of JTT. 

TABLE 9 
THE AVERAGE VPS LOADS WHEN THE FIVE ALGORITHMS PER-

FORM THE SMALL WORKLOAD. 
Algorithm Average number of tasks 

executed by each VPS 
Standard 
deviation 

JoSS-T 80 13.58 
JoSS-J 80 13.59 
FIFO 80 6.32 
Fair 80 9.64 
Capa 80 9.81 

6.2 The mixed workload 
In this subsection, we evaluated how the five algorithms 
perform when they execute the mixed workload. Similar 
to the metrics used earlier, the map-data locality, reduce-
data locality, INT, and VPS load were also used to evalu-
ate the five algorithms. However, JTT was not considered 
in this experiment since the input sizes processed by the 
jobs in the mixed workload were different, which makes 
this metric meaningless. Hence, we further used the fol-
lowing metrics to better measure these algorithms: 
• Workload turnaround time (WTT for short), which is 

the total time required by the cluster to complete the 
entire mixed workload. 

• Cumulative job completion rate during the execution 
of the mixed workload. 

Fig. 11 illustrates the map-data locality results of all al-
gorithms under the mixed workload. Among all algo-
rithms, JoSS-T caused the lowest VPS-locality rate, re-
gardless of job type. The reason is obvious, i.e., JoSS uses 
TTA to quickly assign a task to an idle VPS, rather than 
increasing the VPS-locality.  

On the other hand, by comparing Fig. 11 and Fig. 7, we 
can see that the VPS-locality rates of the other four algo-
rithms on the mixed workload increased. This is because 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

WC SC II Grep Permu

Av
er

ag
e 

re
du

ce
-d

at
a 

lo
ca

lit
y 

ra
te

 JoSS-T JoSS-J FIFO Fair Capa

0
20
40
60
80

100
120
140

WC SC II Grep Permu

IN
T 

(G
B)



JoSS-T JoSS-J FIFO Fair Capa

0
40
80

120
160
200
240
280
320
360
400

WC SC II Grep Permu

Av
er

ag
e 

JT
T 

(s
ec

)


JoSS-T JoSS-J FIFO Fair Capa



1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2463817, IEEE Transactions on Parallel and Distributed Systems

AUTHOR ET AL.:  TITLE 11 

 

each VPS held more input blocks of large jobs and there-
fore improved the VPS-locality rate. This property also 
causes that JoSS-J was not always better than those of the 
other three algorithms in terms of VPS-locality. Neverthe-
less, for all tested MH jobs (i.e., WC, SC, II, and Grep 
jobs), JoSS-T and JoSS-J had similar off-Cen rates, which 
were still much lower than those of the other three algo-
rithms.  

Fig. 11 also shows that when the executed jobs were 
classified as RH jobs (i.e., Permu), the off-Cen rates of 
JoSS-T and JoSS-J were no longer as large as they were in 
Fig. 7. This is because those large RH jobs in the mixed 
workload were always scheduled by policy C, which 
favors map-data locality, especially for the Cen-locality.  

 
Fig. 11. The map-data locality results of the five tested algorithms on 
the mixed workload. 

 
Fig. 12. The average reduce-data locality rates of the five algorithms 
under the mixed workload. 

Fig. 12 shows the reduce-data locality results of all al-
gorithms under the mixed workload. It is clear that the 
two variations of JoSS outperform the other algorithms in 
every benchmark and job type. But we can see that when 
JoSS-T and JoSS-J executed the RH jobs (i.e., Permu) in the 
mixed workload, the corresponding reduce-data locality 
rates were no longer as high as they were in Fig. 8. The 
reason is the same, i.e., all the large RH jobs were sched-
uled by policy C. 

Since JoSS-T and JoSS-J had good data-locality perfor-
mances (see Figs. 11 and 12), they dramatically reduced 
the inter-datacenter network traffic for retrieving map-
input data and reduce-input data during the execution of 
the mixed workload. The results depicted in Fig. 13 
shows that the INTs of JoSS-T and JoSS-J are only 33.44%, 
32.16%, 35.43% of those of FIFO, Fair, and Capa, respec-
tively. 

 
Fig. 13. The INT of the five algorithms on the mixed workload. 

 
Fig. 14 illustrates the WTT results of the five algo-

rithms on the mixed workload. Among all algorithms, 
FIFO consumed the longest time to complete the entire 
mixed workload. This is because some larger jobs arrived 
to the cluster first, smaller jobs afterwards. Thus, smaller 
jobs were delayed and long JTT occurred, which therefore 
prolonged WTT.  

On the contrary, JoSS-J led to the shortest WTT among 
all tested algorithms since it not only used policies A, B, C 
to respectively schedule small MH jobs, small RH jobs, 
and large jobs, but also employed JTA to schedule all jobs 
in a round-robin fashion and meanwhile achieve VPS-
locality. Although JoSS-T also followed the three policies 
to schedule tasks, its WTT performance was not as good 
as JoSS-J’s, implying that employing the TTA to assign 
tasks cannot effectively shorten WTT when a MapReduce 
workload includes large jobs. 

 
Fig. 14. The WTTs of the five algorithms under the mixed workload. 

 
Fig. 15. The cumulative job completion rates of the five algorithms 
under the mixed workload. 

Fig. 15 shows the corresponding cumulative job com-
pletion rates of all algorithms. We can see that the Fair 
algorithm performed best before the mixed workload was 
executed for 4140 seconds. However, after that, JoSS-J 
completed the entire mixed workload first. 

Table 10 lists the average VPS load when the five algo-
rithms were individually used to execute the mixed work-
load. Among all tested algorithms, JoSS-T led to the 
smallest standard deviation (i.e., the best load balance 
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between VPSs), which is much lower than its standard 
deviation shown in Table 9. The main reason is that JoSS-
T uses policy C to schedule all large jobs of the mixed 
workload and uses the TTA to quickly assign each head-
of-queue task to idle VPS. Similarly, employing policy C 
to schedule large jobs also improves the load balance of 
JoSS-J (Please compare Table 10 with Table 9), even 
though the load balance of JoSS-J shown in Table 10 is still 
no better than that of Fair. 

TABLE 10 
THE AVERAGE VPS LOADS WHEN THE FIVE ALGORITHMS WERE 

INDIVIDUALLY USED TO PERFORM THE MIXED WORKLOAD. 
Algorithm Average number of tasks 

run by each VPS 
Standard 
deviation 

JoSS-T 98.23 7.78 
JoSS-J 98.23 11.06 
FIFO 98.23 18.30 
Fair 98.23 9.46 
Capa 98.23 14.74 

6.3 Scheduling overhead 
In this subsection, we evaluate the overhead caused by 
each tested algorithm. Figs. 16 and 17 respectively show 
the CPU idle rate and memory load of the Hadoop master 
server when the five algorithms separately executed the 
mixed workload. It is clear that both JoSS-T and JoSS-J did 
not significantly increase the CPU and memory load of 
the master server compared with the other algorithms. 

In addition, we further evaluated the extra storage 
space consumed by JoSS-T and JoSS-J to store all neces-
sary information about every newly executed job, includ-
ing the corresponding hash value and average filtering-
percentage value. In our experiments, each such a record 
is about 20 bytes. Hence, the total storage consumption is 
proportional to the number of the newly executed jobs. 

Based on the above analyses, it is clear that JoSS-T and 
JoSS-J do not incur significant computation overhead, 
memory overhead, and storage overhead to the Hadoop 
master server. 

 
Fig. 16. The CPU idle rate of the Hadoop master server when the 
five algorithms are individually used to execute the mixed workload. 

 
Fig. 17. The Memory load of the Hadoop master server when the five 
algorithms are individually used to execute the mixed workload. 

7 CONCLUSION AND FUTURE WORK 
In this paper, we have introduced JoSS for scheduling 
MapReduce jobs in a virtual MapReduce cluster con-
sisting of a set of VPSs rented from a VPS provider. Dif-
ferent from current MapReduce scheduling algorithms, 
JoSS takes both the map-data locality and reduce-data 
locality of a virtual MapReduce cluster into consideration. 
JoSS classifies jobs into three job types, i.e., small map-
heavy job, small reduce-heavy job, and large job, and 
introduced appropriate policies to schedule each type of 
job. In addition, the two variations of JoSS (i.e., JoSS-T 
and JoSS-J) are further introduced to respectively achieve 
a fast task assignment and improve the VPS-locality. 

The extensive experimental results demonstrate that 
both JoSS-T and JoSS-J provide a better map-data locality, 
achieve a higher reduce-data locality, and cause much 
less inter-datacenter network traffic as compared with 
current scheduling algorithms employed by Hadoop. The 
experimental results also show that when the jobs of a 
MapReduce workload are all small to the underlying 
virtual MapReduce cluster, employing JoSS-T is more 
suitable than the other algorithms since JoSS-T provides 
the shortest job turnaround time. On the other hand, 
when the jobs of a MapReduce workload are not all small 
to the virtual MapReduce cluster, adopting JoSS-J is more 
appropriate because it leads to the shortest workload 
turnaround time. In addition, the two variations of JoSS 
have a comparable load balance and do not impose a 
significant overhead on the Hadoop master server com-
pared as the other algorithms. 

In the future, we would like to extend JoSS by taking 
heterogeneous virtual MapReduce clusters into consider-
ation so as to increase the flexibility of JoSS. 
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